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SUMMARY 
SENDoc project started in 2017 with the aim to introduce the use of wearable sensor systems in ageing 
communities in northern remote areas. The concept of connected health wearable sensor systems in 
healthcare holds the potential of transforming the health care service but there is a need to test 
different solutions in real-life conditions and to bring together relevant stakeholders in larger scale 
projects to investigate implementation strategies. The project has tested technologies for connected 
health in demonstrator projects to prove feasibility and develop methodologies surrounding the 
technology. One specific topic of interest in SENDoc has been frailty that is related to the ageing 
process. Older people living with frailty are at risk of adverse outcomes such as dramatic changes in 
their physical and mental wellbeing after an apparently minor event that could challenge their health, 
such as a fall or new medication. To identify elderly at risk of frailty would be important as the 
knowledge that they have frailty and might be at increased risk for events such as injurious falls, can 
help health and social care professionals to take action to prevent the poor outcome for a particular 
intervention and to start a pathway of care to address the issues contributing to frailty. The 
demonstrators in SENDoc have focused on different aspects and indicators of frailty and has included 
development of a sensor-based frailty test, functional tests for frailty measurements and gait analysis 
for exercise plan.  
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INTRODUCTION 
The silver tsunami is hitting the world and Europe in particular; Europe's population is ageing. 
Currently, an estimated 962 million people (13% of the population) worldwide are aged ≥60 years, and 
this group is growing at a 3% annual rate. The current economic situation has made these issues more 
acute. Across Europe, healthcare expenditure is expected to reach almost 16% of GDP by 2020. 
Coupled with a shortage of qualified personnel, European nations are facing increasing challenges in 
their ability to provide better integrated and sustainable health- and social services. 

As a result of the age shift, in 2025, one-third of Europe's population will be 60 years or older. This 
“silver tsunami” with an increasing number of elderlies is a fantastic result of improved living 
conditions and medical treatment, but it also represents a great challenge for society. With increased 
age and increased incidence of non-communicable diseases, decreased ability for independent living, 
and potential impaired mental abilities there is a decline in functional and mental capability. As such, 
this demographic trend will affect the countries' economic and social development, welfare, health 
care, and the individual human being. There are two additional challenges in our region that attenuates 
the challenges associated with the silver tsunami: accessibility of services in remote areas and large 
regional differences in terms of access to and quality of health services. There is thus a need to develop 
a people-centered integrated care, as well as a need for strengthening health promotion efforts, to 
reduce the impact of age-related diseases. It is becoming increasingly important that the entire chain 
around health and care is optimally organized. The focus shifts from treatment in a care center to 
prevention and health promotion outside the care institute.  

Though aging is not a disease per se, for most people it is a development of vulnerability, or frailty. 
Frailty as such is not attributable to a single factor and the pathophysiological pathways that lead to 
frailty are not well defined (please 
see Figure 1). Besides a common 
understanding of frailty as a con-
cept, there is an evident need to 
target this vulnerable group in 
society and better define compre-
hensive assessments and subse-
quently multimodal rehabilitation. 
In fact, the European Commission 
(EC) has prioritized frailty within 
the health policy agenda of the 
majority of the European Union 
(EU) member states through its 
“Joint Action on Frailty Preven-
tion”1 

Faced with our aging population, we must look for new ways to ensure that older adults can contribute 
to- and be cared for by- their communities. The future growth of the older population will necessitate 
a more integrated aging infrastructure, with increased social service, and health care options that meet 
the needs of both active- and frail- older adults. Thus, developing elder-friendly communities to meet 
the needs of todays´ older adults and prepare for elderlies’ tomorrow is an issue of growing 
importance. Unfortunately, only a limited body of knowledge exists to assist policymakers and 
practitioners in creating elder-friendly social structures. However, current healthcare systems and 
processes are more focused on providing acute, reactive care rather than on treating and modifying 
the progression of these chronic conditions or their prevention. To increase the citizens access to- and 
value of- care, we will need to combine efforts that promote health, reduce process inefficiencies, and 
captures value from enabling technologies. 

Figure 1 Factors related to frailty 
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The focus needs to be on healthcare information and patient/citizen data, facilitating its secure 
movement out of system silos and transforming it into intelligence for improved patient administration 
and enablement of patient-centered, coordinated care. Progress must continue, but in equal measure 
new ways of grasping the potential of rapidly emerging technologies must be sought, such as more 
integrated use of electronic health records (EHRs), greater sharing of digital communication between 
patients and clinicians, and more prevalent use of technologies that drive remote diagnosis, treatment, 
care and patient education, with the objectives of achieving three critical aims:  

1. Increasing citizen access to- and value of- care 
2. Collaboration to improve quality, outcomes, and personalized care  
3. Building of sustainable, cost-effective healthcare systems 

The SENDoc project has been working with one part of this equation, namely evaluating the use of 
wearable sensor systems in ageing communities in northern remote areas. One of the key innovations 
of SENDoc has been to use sensors to measure mobility, strength, and balance, in order to support 
independent living in rural communities. SENDoc has focused on changing existing rehabilitation 
programmes, transferring research and development in wearable systems, applying connected 
healthcare concepts and creating platforms where data and experiences can be shared and supported, 
capturing data through innovative sensor wearable software systems, measuring impact on health, 
testing technical and social acceptability, and testing the functionality in cold climate conditions. 

Frailty needs to be investigated 
from many different angles due 
to that frailty is not attributable 
to a single factor and the patho-
physiological pathways that lead 
to frailty are not well defined 
(please see Figure 2).  

 

 

 

 

Within SENDoc we have performed several demonstrators to investigate how we can potentially use 
wearable sensors when working with elderly and the frailty concept. We have investigated stability, 
usability, predictability and diagnosability of different systems. 

 
THE SENDOC DEMONSTRATORS 

For the using of wearables to become common practice in health care there is a need for the systems 
to be durable and able to handle multiple testing in different settings. The systems also need to be 
easy to use and to interpret. We have performed a wide array of demonstrators. The SENDoc project 
has used an informed, structured process for the selection of health wearables in the context of 
wearables demonstrators. The process started with the identification of user needs, followed by their 
translation to technical specifications defined in terms of quantifiable features. These features were 

Figure 2 Assessment and multimodal rehabilitation 
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defined using ideal and marginally acceptable values based on national regulations and constraints 
imposed by the specific context. The devices available in the market were screened and rated against 
these technical specifications. Then the selected devices were submitted to preliminary verification 
and usability tests. Finally, the devices were validated for its use under real-life conditions. 

Description of test centers in SENDoc 

Finland 
The SENDoc demonstrators in Finland have been done in collaboration with our associate partner Siun 
sote - North Karelia’s Joint Municipal Authority, Social and Healthcare Rehabilitation Unit. Usability 
evaluation procedure in real rehabilitation working life processes and rehabilitees have been 
invaluable. Key actors have also been Karelia University of Applied Science’s service units and learning 
environments FysioTikka and Voimala. Karelia’s Movement & functional capacity lab facilities have 
been basic structure of accuracy evaluations of different sensor systems. Rehabilitation with remote 
connections and sensor demonstrators have been conducted together with private rehabilitation 
companies and with Finnish NPA area companies, that manufacture and develop sensor systems and 
remote rehabilitation services. 

Ireland 
The SENDoc demonstrators in Cork, Ireland have been performed by two groups in University College 
Cork: Tyndall National Institute, ICT and Deep Tech experts, as well as the Centre for Gerontology and 
Rehabilitation in association with St Finbarr’s Hospital. We have also collaborated with our SENDoc 
colleagues in Northern Ireland to evaluate technology from Ulster University 

Northern Ireland 
The SENDoc demonstrators in Northern Ireland have been performed in collaboration with the 
Western Health and Social Care Trust (WHSCT) Altnagelvin hospital and the Clinical Transnational 
Research and Innovation Centre (C-TRIC) in Derry/Londonderry. The C-TRIC is a clinical state-of-the art 
research facility not-for-profit personalized medicine, which connects patients directly with research 
opportunities, and it has partnerships between Derry City and Strabane District Council, Ulster 
University and the WHSCT. Also, demonstrations have taken place at the Intelligent Systems Research 
Centre at Ulster University, which is a state-of-the-art research environment comprised by laboratories 
for bio-inspired and micro engineered-, brain-computer interfacing-, computational neuroscience, 
cognitive robotics, and instrumentation, also including facilities for ambient intelligence and wireless 
sensor networks.  
 

Sweden 
The SENDoc demonstrators in Sweden have been performed in collaboration with Life Medicine, a 
testbed at the Northern University Hospital, Region Västerbotten and Umeå University. Life Medicine, 
a testbed working /aiding R&D and innovation in personalized medicine, carries out testing and 
development of new and innovative patient-healthcare solutions within Personalised Medicine by 
taking advantage of the region's expertise in innovation power, Big Data, research and  susceptible 
regional healthcare that acts in favor of improved healthcare and care. The testbed shortens the 
distance from idea to innovation and is a platform for creating new commercial services and products 
for export. The concept consists of four parts: showroom, tech-lab, designed/simulated user 
environment and real user environment, digital portal, and open innovation.  
 

Findings from demonstrators 

1. Development of sensory based frailty test 

1.1 Balance and the risk of falling2 
Studies have shown that over 90% of all hip fractures are caused by falls, illuminating the need for 
ways to accurately predict and preferably prevent falls among the increasing number of older adults. 
Fall risk may be influenced by postural stability, also known as the individual´s ability to maintain the 
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body’s center of gravity within the base of support (BOS) during dynamic or static activities3. We have 
previously published results revealing that impaired postural stability can increase the risk of incident 
falls by 75–90% among older adults in the highest quintile of postural sway, measured objectively as 
center of pressure (COP) oscillations when the sensorimotor system compensates for perceived shifts 
in the body’s center of mass4,5. (However, less is clear regarding the potential interaction between 
COP sway and limits of stability (LOS) in relation to fall risk. LOS can be defined as to how far an 
individual is willing to extend their COP relative to their BOS without tripping, slipping or falling. 
Researchers have shown that the BOS and LOS decrease with age and in individuals suffering from 
neurological deficits such as Parkinson’s disease and multiple sclerosis. 

 

Instruments and measurements 
The investigated sample was drawn from the Healthy Ageing Initiative (HAI) cohort study, ongoing 
since June 2012 in Umeå, Sweden, which invites all 70-year-old individuals residing in the Umeå 
municipality to participate. Eligible participants, drawn from population registers, received written 
information about the study and were subsequently contacted via telephone. If agreeing to 
participate, they arrived at a prescheduled visit where they provided written consent and commenced 
testing. The sample used for this study was based on the first 2396 men and women with complete 
data on postural stability and prospective fall assessments from the HAI cohort. Data were collected 
between June 2012 and December 2016. This study was permitted by the Umeå University Research 
Ethics Committee and followed the principles outlined in the World Medical Association’s Declaration 
of Helsinki. 

 
Assessment of postural sway and limits of stability 
COP and LOS data were collected using a Wii Force Plate (WFP; Nintendo, Kyoto, Japan), connected via 
Bluetooth to a stationary computer. Data were acquired by the custom written Visual Studio software 
Balans-Test using WiimoteLib v1.7 (https://wiimotelib.codeplex.com/). The WFP contains four vertical 
force sensors, which delivers data at ∼60 Hz and our software sampled it at 100 Hz after interpolation. 
Force signals were then exported to MATLAB R2014b (Mathworks, Inc, Natick, MA, USA), filtered with 
a 3rd degree Butterworth filter (10 Hz), and finally, down-sampled to 20 Hz. LOS assessment was 
initiated with each participant standing stationary on the WFP while maintaining eyes open (EO). They 
were subsequently introduced to a leaning protocol by a research nurse, who instructed the 
participants to lean as far as they could from the initial static position in a circular motion during 60 s. 
The motion direction was chosen by the participant although the research nurse instructed a clockwise 
direction if the participant seemed unsure on how to begin. From a monitor the participants received 
visual feedback on their COP excursion from the center while forming the LOS, which also provided 
the final representation when the trial ended. Participants were instructed to maintain a handhold on 
a provided bar in front of them and apply horizontal forces throughout the whole LOS-estimation 
procedure. As surprisingly shown in pilot tests, these forces do not influence the vertical force and the 
gravitational force on the force plate during LOS assessments. The general rationale behind this 
approach was to enable a slow-velocity leaning protocol that has been suggested for accurate, elliptical 
LOS estimations 6, while also reducing the participant’s potential anxiety of falling when attempting to 
extend the LOS closer to the possible maximum.  
Lastly, participants were also instructed to only use ankle joint movement when leaning. A secondary 
LOS measurement was performed if the participant used hip joint movement for leaning, took a step 
in any direction or would generally not follow the instructions provided by research nurses. With LOS 
assessment complete, participants removed the hands from the bar in front of them and conducted 
one EO trial and one eyes closed (EC) trial during 60 s each, measuring COP sway length in a bipedal 
quiet stance. They were instructed to avoid body movements, stand relaxed with their arms resting at 
their sides and maintain an upright position. Measurements were repeated in the event instructions 
were not followed. Given the positions of the force sensors, we calculated the COP from the force 
signals. We constructed convex polygons enclosing the trajectories of the COP. The polygons were 
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characterized by their area (centimeters squared). As indicators of the participants’ behavior, we 
investigated Sway-Area-to-LOS (SA:LOS, 0–100), i.e., the ratio between the sway area and the LOS, as 
well as Minimal distance between sway area and LOS (MinD:LOS; centimeters). The direction of the 
MinD:LOS parameter could occur in a 360° angle since it was located wherever the LOS border and the 
sway area were in closest proximity to each other. 

 

Assessment of physical activity and capacity 
Participants wore triaxial accelerometers (GT3X+; Actigraph, Pensacola, FL, USA) during 7 consecutive 
days following the baseline measurements for physical activity (PA) assessments. Instructions provided 
to participants and accelerometer settings used have been previously described 7. Total Moderate-to-
Vigorous PA per day was classified as the sum of activity minutes above moderate and vigorous 
intensity thresholds. Wear time validation protocols defined non-wear time as ≥60 min of consecutive 
zero activity with a 2-minute spike tolerance. Measurements were excluded from analysis if 
accelerometer wear time was below 4 days with 10 h per day in total. Isometric muscle strength was 
examined using a hydraulic hand dynamometer (Jamar; Patterson Medical, Warrenville, IL, USA) to 
measure each participant’s maximum grip strength in the non-dominant hand. Participants were 
instructed to maintain the elbow in proximity to the waist and keep the arm at a 90° angle, while 
compressing the handgrip dynamometer with maximal effort. The maximum value obtained in two 
consecutive attempts was used in further analyses. Participants also completed the Timed- Up-and-Go 
(TUG) test to assess gait ability, lower leg muscle strength and overall functional mobility 14 . 

 

Fall data collection 
On the day of the examination participants reported retrospective falls that occurred up to 12 months 
prior to the examination through a questionnaire. Prospective falls were collected by contacting 
participants at follow-up 6 and 12 months later where a research nurse asked the question: ‘During 
the past 6 months, have you experienced a fall at the same level?’ Qualifying retrospective and 
prospective falls were defined as low-energy incidents where the participant came to rest on the 
ground unexpectedly by themselves. 

 

Results 
During follow-up, 337 out of 2,396 participants (14%) had experienced a fall. Unadjusted regression 
models from the EO trial revealed increased fall risk by 6% (OR 1.06, 95% CI 1.02–1.11) per each 
centimeter squared increase in sway area and by 16% (OR 1.16, 95% CI 1.07–1.25) per 1-unit increase 
in Sway-Area-to-LOS ratio. Odds ratios were generally lower when analyzing EC trials and only slightly 
attenuated in fully adjusted models. 

 

Significance  
Integrating postural sway and LOS parameters provides valid fall risk prediction and a holistic analysis 
of postural stability. Future work should establish normative values and evaluate clinical utility of these 
measures. 
 
 
 

1.2 Machine learning modelling for mortality prediction in a population of older adults 

Introduction 
Nowadays, the investigation about mortality prediction has become crucial because, with an 
increasing utilization of hospital healthcare by elderly population, an immediate assessment on 
patient’s condition has become the first step to guarantee an improvement in the long-term survival, 
while reducing the total healthcare demand.  
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Nevertheless, current clinical indexes show a number of limitations, making the implementation of 
new diagnostic modelling for the development of risk prediction algorithms of primary importance. 
This work aimed to investigate and then demonstrate the possibility to find new solutions based on 
machine learning, using clinical data collected over a 5 years’ span. In particular, the hypothesis of this 
project was that all-cause mortality could be predicted starting from data collected via activity trackers 
and questionnaires, simplifying the standard approaches that are mainly based on lifestyle choices, 
such as smoking and alcohol consumption, and health factors, such as cancer or heart disease history. 
Because of their low-cost and ease of use, this new study might drastically reduce the healthcare 
expense burden, guaranteeing at the same time accurate and objective predictions. 
 

Dataset 
The data adopted in this study were taken from the Healthy Ageing Initiative study in Umea, Sweden, 
concerning medical history, lab tests, physical activity, and behaviour, including alcohol- and tobacco 
use and mental wellbeing. It is composed of 156 parameters extracted from a 70-years old population, 
after a 3-hour health examination carried out on each participant, totalling 2291 elderly entries. All 
the measurements were repeated only once, in a period from January 2013 to December 2017, and 
the subject’s conditions were monitored to know which patients passed away in the time between 
their data collection and the end of study date (31st December 2019). The study aimed to generate a 
dataset including various and heterogeneous features to evaluate all the possible aspects that 
influenced older people’s daily life. Nevertheless, the obtained dataset presented one of the most 
common scenarios findable in clinical studies, represented by a low amount of data belonging to 
positive class, since only 92 (4%) of the total patients passed away during the study period. For this 
reason, the most challenging aspect of the work was related to properly manage the severely 
imbalanced dataset. 
 

Methods 
To overcome the problem, several machine learning techniques have been considered, involving data 
augmentation, feature engineering, over/under-sampling, probability calibration, and ensembles 
methodologies by means of several base classifiers. 
Furthermore, since current literature showed the efficiency of ensemble model while managing highly 
imbalanced dataset, the final solution was found by implementing all the previous techniques in 
conjunction with an ensembling classifiers structure. The resulting model involved a first feature 
selection procedure, by means of the FSCA algorithm, followed by the removal of outliers by using 
Isolation Forest. Finally, ten Adaboost models were used in parallel, trained by ten different subsets of 
training data randomly oversampled through the Random Balance algorithm (Figure 3 and Figure 4). 
Each classifier was given a weight based on its accuracy and the result was computed with a soft-voting 
approach. 
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Figure 3 
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Figure 4 

 

Results and Discussion 
The achieved results identified the AdaBoost as most performant base classifier, followed by Decision 
Tree, Random Forest, Logistic Regression and Support Vector Machine as last.  
Nevertheless, when a cost-sensitive technique was applied, the overall performance of each model 
was getting worse with respect to all the other scenarios, implying its inefficiency in performing the 
required task.  
At the same time, by looking at results reached with the implementation of Monte Carlo data 
augmentation, the overall performance became even worse, highlighting the inadequacy of the 
solution for this kind of dataset. For this reason, only over sampling and probability calibration 
methods have been adopted in the final model, choosing as base classifier the AdaBoost model. 
 
Finally, the achieved result with the ensemble model showed a mean AUC-ROC value of 0.880 (Table 
1 and Figure 5 below), a very promising result, aligned to the state-of- the-art results in literature on 
the topic. 
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Figure 5 

Moreover, a further investigation was performed by considering only subsets of features in different 
cases: 
• Case 1: Demographic/Anthropometrics and Questionnaires. 
• Case 2: Demographic/Anthropometrics, Questionnaires and Wearables data. 
• Case 3: Demographic/Anthropometrics, Questionnaires, Wearables data and Lab tests. 
• Case 4: Demographic/Anthropometrics, Questionnaires, Wearables data and Others. 
 
This analysis was repeated in two cases: for all the original patients, and for only the patients passed 
away for cancer illness as samples of class 1. Also in this case, the results obtained were extremely 
interesting, reaching an AUC-ROC value of 0.882. Moreover, the scenario in which only features related 
to demographic, questionnaires and wearable data were used, showed a minimum loss on the AUC 
metrics (0.882 vs 0.857), enhancing the reliability of data from questionnaires and wearable devices 
to predict accurately cancer-related mortality in older adults (Tables 2 and 3 below). 
 
 

Table 1 

Table 2 
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The results showed the performance of the model and, as a consequence, the possibility to adopt the 
developed model on equivalent health-related scenarios (i.e. sepsis prediction, arrhythmia detection), 
which are plagued by the common problems associated with severely imbalanced datasets. 
 
 

1.3 Measuring sedentary behaviour as a potential risk factor for depression8 
Sedentary behaviour has previously been associated with the risk of depression. Older adults have 
proven to be more sedentary and more depressed than other age groups. However, there is a lack of 
data using objective measures of sedentary behaviour and taking physical activity into account. Thus, 
the purpose of this population-based demonstrator was to examine how total sedentary time and 
length of sedentary bouts were associated with the risk of depression among 70-year-olds using 
wearables.  
 
Participants met individually with a qualified research assistant at the department in Umeå. They were 
interviewed about their medical history, health status and lifestyle and then performed several tests. 
The tests were associated with general health, including a screening instrument to identify depression. 
The whole procedure was around three hours. To measure sedentary behavior and physical activity, 
participants were sent home with an accelerometer for one week. The first measurement occasion 
was followed by a revisit after one week to discuss the participants individual results. 

 

Instruments and measurements 
Data from a total number of 3,633 individuals were collected and analysed. Sedentary behaviour was 
measured objectively with the ActiGraph GT3X+ and depression was measured with the Geriatric 
Depression Scale (GDS-15), several covariates such as physical activity were examined. 

 

Geriatric Depression Scale (GDS-15) 
GDS-15 is a 15-item self-assessment questionnaire developed to identify major depressive disorder in 

older adults9. In this study a Swedish GDS-15 version, which has been used in previously10, was used. 
Respondents are given a score of 0-15 and a score ≥5 is a validated cut-off value of clinical depressive 

Table 3 
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symptoms11. The GDS-15 has shown to be valid to detect major depressive disorder and has good 

internal consistency with a value of Cronbach’s 𝛼 at 0.8012. 

 

Accelerometer 
To measure SB and PA the accelerometer ActiGraph GT3X+ (ActiGraph Corporation, Pensacola, FL, 
USA; www.actigraphcorp.com) was used. The accelerometer provides objective measurements of 
activity, summarized into “counts” where counts per minute (CPM) are used when analysing data. The 
participants wore the accelerometer for four to seven continuous days. Data was stored every 60 
seconds and can be categorized based on duration and intensity of the activity. Cut off points based 

on CPM were classified into categories according to13. For the analyses in this study two measures of 

SB were calculated from the accelerometer. One variable with percent of the day spent sedentary and 
one with an average length (mean) of sedentary bouts defined as periods of time in uninterrupted 
activity. 

 

Covariates 
Data from the accelerometer was also used as a measure of PA which was included as a covariate. 
Participants were divided into groups of fulfilled or not fulfilled WHO recommendations for PA (at least 
150 min moderate-intensity PA or 75 min vigorous-intensity PA throughout the week; World Health 
Organisation, 2018). Data from Timed Up and Go (TUG), which is a measure of basic mobility skills 14, 
and The JAMAR Hydraulic Hand Dynamometer (Patterson Medical, Warrenville, IL, USA; 
www.pattersonmedical.com), which gives a measure of grip strength were used as measures of 
functional performance in accordance with Holmqvist et al. 15.  The occurrence of self-reported 
diabetes type 2 and stroke were included as covariates in the analyses, as was sex.     

 

Findings 
The purpose of this study was to examine if sedentary behavior was associated with depression among 
elderly using wearables. To investigate this, two measures of sedentary behavior were used from 
accelerometer hardware and the results indicated that both higher percent of the day spent sedentary 
and longer average length of sedentary bouts increased the risk of being depressed, also when 
adjusting for several covariates such as physical activity. Sedentary behavior is thus a potential risk 
factor for depression among older adults. These findings were strengthened by the adjustment for 
physical activity and the use of an objective measure in the form of data collected with accelerometer 
on a large sample. Using wearable accelerometer technology, new information about the risks 
associated with increased length of sedentary bouts was provided. To our knowledge, this is the first 
time on this subject that use an objective measure of sedentary behavior and physical activity on a 
population-based sample of this size. 
Data from a total number of 3,633 individuals were collected and analysed from the Healthy Ageing 
Initiative, an ongoing cross-sectional research project in Umeå. Sedentary behaviour was measured 
objectively with the ActiGraph GT3X+ and depression was measured with the Geriatric Depression 
Scale (GDS-15), several covariates such as physical activity were examined.  
Results  

Results from two hierarchical logistic regressions showed that both higher percent of the day spent 
sedentary and longer average length of sedentary bouts increased the risk of being depressed.  
 

Conclusions   
The present study verifies previous findings about the relationship between sedentary behaviour and 
depression and provides new information about the risks associated with increased length of 
sedentary bouts.  These findings may be important to consider in future recommendations for 
preventing depression among older adults. 

 

http://www.pattersonmedical.com/
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1.4 Recoverability of gait analysis and effects of day rehabilitation to fall risk of older persons  
Introduction 
Research was conducted in seven Siun sote Older person’s day rehabilitation groups between October 

2019 and January 2020. In practice measures was done in the beginning and the end of period of the 

rehabilitation with GWalk sensor system. The starting and ending values of gait parameters of higher 

fall risk and other tests of functional capacity (SPPB, FRAT, MMSE) and connections to life quality 

(WHOQOL-BREF, RAND-36) were compared. Statistical analysis was done with SPSS- program. 

Researcher interviewed the day rehabilitation group instructors, about their experiences of 

recoverability of gait analysis in rehabilitation process. 

 

Results 
Participants walked 20 m distance with their normal walking speed. RAND -36 Health survey (Table 4) 

was also conducted at the beginning and the end. Collected was additional information from Siun sote: 

SPPB (short physical performance battery) from 30 participants and FRAT (fall risk assessment tool) 

from 12 participants. 59 older people participated, and they were divided into four different groups 

according to activity:  

1.) 1 x week, no strength training in gym, duration 8-9 weeks, no physiotherapist (N=12)  

2.) 1 x week, strength training in gym, duration 7 weeks, physiotherapist (N=9)  

3.) 2 x month, no strength training, duration 8-10 weeks, physiotherapist (N=16)  

4.) 2 x week, strength training in gym, 6-7 weeks, physiotherapist (N=14)  

  

Mean age 82 years (69-94 years old), 44 (74,6%) were women and 15 were men (25,4%)  

  

  Group 1 
(N=20)  

 Group 2 
(N=9)  

 Group 3 
(N=16)  

 Group 4 
(N=14)  

 

  1  2  1  2  1  2  1  2  
Walking 
speed 
(m/s)  

0.72  0.73  0.66  0.81  1.03  1.05  0.72  0.88  

Cadence 
(steps/
min)  

93.8  97.2  95.1  101.0  107.7  107.5  92.4  102.6  

Symmet
ry (%)  

89.3  89.8  86.3  87.3  93.6  95.0  94.2  92.7  

Propulsi
on 
(right)  

4.1  4.4  3.6  4.6  6.4  7.0  4.2  5.1  

Propulsi
on (left)  

4.1  4.2  3.7  4.9  7.0  6.8  4.5  5.3  

Physical 
Function
ing  

45.25  45.75  41.67  38.33  70.63  66.56  38.57  50.71  

Energy/
Fatigue  

57.75  58.25  48.89  57.22  71.56  67.81  54.29  66.43  

General 
health 
percepti
ons  

47.75  47.25  41.67  43.89  54.38  55.00  43.93  48.93  
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Emotion
al Well-
Being  

77.20  77.00  79.11  86.22  82.25  79.00  76.86  80.57  

Social 
function
ing  

73.78  78.13  75.00  81.95  86.72  87.20  74.11  93.75  

Bodily 
pain  

57.25  56.25  53.33  61.11  72.50  70.78  68.93  71.96  

  

 

Statistically significant (Wilcoxon) results in Group 4 when comparing initial and final 

measurements:   

Group 4: 2x week, strength training in gym, 6-7 weeks, physiotherapist (N=14)  

RAND -36 Health Survey:   

• Physical functioning, Energy/Fatigue, Social functioning  

G-WALK :   

•  Walking speed (m/s)  

•  Cadence (steps/min)  

•  Propulsion right and left  

  

QUALITATIVE DATA: How Day Rehabilitation instructors and physiotherapists experienced the use of 

the G-Walk sensor system during Day rehabilitation periods?  

• Four physiotherapists and one Day Rehabilitation instructor followed the measurement 

situations (initial and end measurements) with G-Walk sensor system with the participants  

• After this they were interviewed about how they felt and how they experienced using this 

device in Day Rehabilitation periods  

• The interviews were face-to-face unstructured interviews. Interviews were strongly 

participant-led and interviewer asked supplementary questions based on what the 

interviewee said (Braun & Clarke 16, 78).  

• Interviews will be transcribed and analyzed in summer 2020. Inductive thematic analysis is 

used in the content analysis. The aim is to identify themes and patterns of meaning across the 

dataset in relation to the research question. In inductive thematic analysis the idea is to 

generate an analysis from the “bottom up” from the data, with no pre-existing theory, 

however, considering the researcher´s standpoint, disciplinary knowledge, and epistemology. 

(Braun & Clarke 2013, 175.)  

 

1.5 Predicting fall risks in elderly from accelerometer data using neural networks 
 
 
Introduction  
Fractures, especially hip fractures in the elderly population, is a big public health issue, which is  
predicted to worsen in the next couple of years in Sweden and many other nations with an ageing 
population. Fractures result in increased morbidity, mortality, and health expenditures17.  
As 90% of all fractures are a direct result of falls18, we would like to have an easy and practical way to 
identify an elderly person at risk of falling before a sad outcome.  
 
Dataset  
The investigated sample was drawn from the Healthy Ageing Initiative (HAI) cohort study, ongoing 
since June 2012 in Umeå, Sweden, which invites all 70-year-old individuals residing in the Umeå 

Table 4 
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municipality to participate. Eligible participants, drawn from population registers, received written 
information about the study and were subsequently contacted via telephone. If agreeing to 
participate, they arrived at a prescheduled visit where they provided written consent and commenced 
testing. The sample used for this study was based on the 1705 men and women with complete 
accelerometer, lab-based gait analysis data and prospective fall assessments from the HAI cohort. Data 
were collected between June 2012 and December 2016. This study was permitted by the Umeå 
University Research Ethics Committee and followed the principles outlined in the World Medical 
Association’s Declaration of Helsinki. 
 
Limitations of Existing Fall Prediction Work 
Preliminary work carried an analysis of the literature and identified three key issues that future 
research should focus on to advance the research area of Sensor based Falls Risk Testing (SFRT). These 
issues relate to:  
1) fall classification criteria  
2) data acquisition methodology   
3) validation protocols used  
 
Each issue was raised in at least two recent review articles. 
 
1) Classification Criteria: 
The classification criterion is the baseline measure used to compare a proposed fall risk measurement 
technique against. It is the basis of all performance metrics used to evaluate the fall risk assessment 
tool and thus should be carefully considered when designing a fall risk assessment study. 
 
The method used to classify fall risk differs among the literature. Participants are commonly classified 
as fallers or non-fallers based on one of several different methods including Clinical Assessment, 
Prospective Falls and Retrospective Fall. 
 

• Clinical Assessment: A person is classified as a faller or non-faller based on their performance 
of an assessment, or set of assessments, in clinical settings (e.g., Timed Up and Go test).  

• Retrospective Falls: A person is classified as a faller or non-faller based on self-reported fall 
history denoting the presence or absence of fall occurrences in the past. 

• Prospective Falls: A person is classified as a faller or non-faller based on self-reported fall 
occurrence within a follow-up period from the assessment (commonly one year). 

It is accepted in the literature that clinical assessment and retrospective falls only act as proxy measure 
for prospective falls, which is defined as the gold standard measure. However, in the literature review, 
we identified a total of only 15 papers which use prospective falls as the criterion measure 17 18 19 20 21 
22 23 24 25 26 27 28 29 30 31. 

 
2) Free Living based Data Acquisition: 
Performance of standardised gait/balance tests in a lab or clinic setting is the most used approach in 
the literature for SFRT. However, this approach has several disadvantages which we discuss below.   
 
One issue relates to the participants' awareness of being observed (Hawthorne Effect) during 
performance of gait and balance tests in controlled settings. Research has shown that gait 
performance can differ when participants are being observed. Thus, gait-based measures in lab/clinic 
settings may not reflect naturalistic behaviour. Another issue with controlled lab-based measures is 
the cost and time associated with administering the test. Lab based assessments require at least one 
expertly trained health professional to set up the equipment and administer the test. Additionally, 
participants are required to physically attend the lab. As previously discussed, for fall risk assessments 
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to be adapted in clinical practice it is vital that they are easy and cost effective to administer. Current 
lab-based approaches are therefore rarely adapted for regular fall risk screening. 
 
As an alternative to acquiring data under controlled lab-based conditions, gait-based measures can be 
extracted from free living behaviour where sensors are worn by participants in their natural daily living 
environments. There is clearly a significant benefit to this method of data collection as participants are 
not required to attend specialist clinics or lab settings and participants do not need to be monitored 
or supervised by clinicians or other health care professionals. Furthermore, behaviour measured in 
free living conditions should be considered more representative of natural behaviour compared to 
measures taken in lab-based settings. 
 
In the 15 previously identified works on prospective falls, 2 were based on prospective falls. 
 
3 Problematic Machine Learning Methodology 
Recent research has highlighted some troubling trends in relation to the presentation of over-
optimistic SRFT results. Concerns have been raised in relation to sample size, questionable modeling 
and problematic validation methodologies. 
 
One if the biggest challenges in SFRT is acquiring a large enough sample size to ensure sufficient study 
power. This is particularly challenging for prospective based falls studies where there is a requirement 
for a 6-12 month follow up with each participant. However, from the set of 15 reviewed prospective 
falls papers, we found that the largest number of participants used was only 319 and the average 
number of participants used was 127 (+/- 86). Most studies have therefore been too small to gain any 
real statistical insight into the effectiveness of techniques if applied to a larger population. 
 
Another issue relates to misuse of model validation methodologies in SFRT studies. In particular, a 
common problem found was that testing data is used in some of the model training pipeline steps, 
such as feature selection, model selection, parameter tuning. These practices lead to models that are 
biased towards the available data and thus can produce models that are over-trained and produce 
inflated accuracy scores that are unlikely to maintain their reported performance during real world 
use. To build a model that is not biased towards the available data, it is vital that testing data should 
never be used to inform the feature selection, model selection or parameter tuning. For example, 
learning which features to select should be conducted on training data only. Learned features can then 
be selected from training and test set. This holds true for K-fold cross validation (CV) also, where K 
train-test sets are used. In this case, feature selection, model selection and parameter tuning should 
be performed independently on the training data for each the K splits. 
 
Research also highlights issues with the use of CV as the primary mechanism to evaluate prediction 
techniques. Specifically, there is no way to know how reliable a CV based performance measures is. 
Furthermore, CV has been shown to have a large uncertainty for small sample sizes common in health 
and medical research where sample sizes are in the hundreds. It is therefore advised, particularly for 
small datasets with N < 1000, that performance be reported using a single holdout test set. 
 
Of the previously identified 15 works, only 1 of these use an external holdout test set. 
 
Aim  
The aim of this study is to address these 3 key issues and develop machine learning models to predict 
prospective falls using free living-based accelerometer data. 
 
Data Acquisition 
1,705 participants, all  70 years old, took part in the study (817 female and 888 male). All participants 
attended an examination session conducted by a research nurse. During the examination session, 
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participants were asked to perform a set of standardized functional tests; Timed Up and Go (TUG), Gait 
Velocity during a 6 Meter Walk Test and Non-Dominant Hand Grip Strength. Participants also 
performed a gait assessment on a pressure sensitive walkway (GAITRite, CIR Systems Inc, USA). 
Participants were asked to walk the length of the walkway (6 Meters) and 65 gait based measures were 
calculated for each participant using proprietary software (GAITRite). Gait measures include Step Time, 
Cycle Time, Step Length, Heel to Heel Base Support Distance, Single Leg Support Time, Double Leg 
Support Time, Swing Time, Stance Time, Step Extremity Ratio and Toe In/out angle.  
 
History of falls in the 12 months prior to the study commencing was also recorded based on participant 
recall. A fall was defined as an event which results in a person coming to rest inadvertently on the 
ground or floor or other lower level. 
 
After the examination session, participants were provided with a hip mounted tri-axial accelerometer 
(Actigraph GT9X, Actigraph LLC, USA) which they were asked to wear for 7 consecutive days. 
Acceleration for x, y and z axis were recorded for the duration of the 7 days at 30Hz. At the end of the 
7 days, the device was returned by the participant and acceleration data was retrieved for each 
participant (average of 911MB per participant). 
 
Six and twelve months after the examination session, follow-up telephone interviews were conducted 
to ask whether participants have experienced a fall since their examination session. Prospective follow 
up phone calls identified 255 participants reporting at least one fall within 12 months after the 
examination session with 16.4% (n=134) of females and 13.6% (n=121) of males reporting a fall. 525 
participants reported having a fall prior to the study commencing. Of the 525 participants reporting a 
fall in the 12 months prior to the study, only 19% (n=98) of those reported a fall in the 12 month follow 
up period. The remaining (n=151) prospective falls were from participants who did not report a fall in 
the 12 months prior to the study commencing. 
 
Methods 
This work aims to calculate gait quality-based features from accelerometer data retrieved from the tri-
axial accelerometer worn by participants to predict fall risk. Prior to extracting gait-based measures 
from free living-based data, automatic detection of periods of ambulatory activity is first performed. 
 
Singal Processing 
With the accelerometer worn around the waist, the aim was that participants would wear the device 
such that the accelerometer axis aligned with anatomical axis such that accelerometer x, y and z axis 
aligned with sagittal, longitudinal, and frontal axis respectively. It was observed that participants 
consistently aligned the accelerometer y axis with the anatomical longitudinal axis due to the 
constraints imposed by the sensor belt mounting mechanism. However, due to the potential to mount 
the sensor at any position on the waist between the left hip and right hip, alignment of the sensor x 
and z axis with the anatomical frontal and sagittal axis was performed inconsistently by participants. 
The x and z axis were therefore combined into a single horizontal acceleration magnitude Ahoriz to 
ensure measurements were consistent across all participants. Overall acceleration magnitude is also 
calculated, defined as Amag. 
 
Ambulatory Activity Detection 
Prior to extracting gait features, periods of ambulatory activity were automatically identified from a 
filtered accelerometer signal. Candidate steps were first identified by performing peak detection on a 
vertical acceleration signal $A_{y}^{'}$ filtered using a 4th order butterworth bandpass filter (0.25 to 
2.5 Hz). All identified peaks were evaluated and defined as a candidate step only if the signal had a 
zero-crossing and crossed both a positive and negative threshold of $\pm 0.8$ on either side of the 
zero-crossing. All candidate steps were then grouped into clusters based on temporal proximity to one 
another. 
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Clusters of candidate steps that met a set of pre-defined criteria were classified as periods of 
ambulatory activity. While it is important that many periods of ambulatory activity are correctly 
identified (i.e., true-positives), it is more important that other periods of activity, that are not 
ambulatory in nature, are not included for further analysis (i.e., false-positives). The criterion was 
therefore designed to detect steady state ambulatory activity to minimize the number of false positive 
periods of ambulatory activity detected. The criteria implemented is defined as follows: 
 

• Time between each step peak should be between 0.2 and 3 seconds 

• Standard Deviation of time between all step peaks should be within +/- 0.8 seconds 

• There should be a minimum of 25 steps within the cluster. 
 
Feature Extraction 
For each period of detected ambulatory activity, raw accelerometer data for that period was processed 
and features were extracted. A 4th order butterworth bandpass filter (0.05 to 3.0 Hz) was applied to 
the three raw accelerometer signals, Ay, Ahoriz and Amag. A single feature vector F was computed for 
each participant from the median of all feature vectors fi where fi is the feature vector computed from 
the ith bout of detected ambulatory activity. Each feature vector consists of a step based feature vector 
si and a frequency based feature vector pi such that fi = {si,pi}. 
 
The step-based feature vector si is comprised of a set of statistical based features computed for each 
filtered signal (Ay, Ahoriz, Amag). Step features include maximum, minimum, index of maximum, index of 
minimum, variance, signal mass center, number of peaks, absolute energy, auto-correlation mean and 
sample entropy. Step features are computed for each step, within the ith bout of ambulatory activity, 
between the local minima preceding and succeeding the step peak. This was performed for all peaks 
within the ith bout of ambulatory activity and the overall step feature si was calculated as the median 
of all step features within the ith bout of ambulatory activity.  
 
The frequency-based feature vector pi is comprised of FFT and Wavelet coefficients which are 
calculated from a fixed size 10 second window within the bout of ambulatory activity. For bouts of 
ambulatory activity that last longer than 10 seconds, a sliding window approach was used to find a 10 
second period that minimizes the standard deviation of time between step peaks. Thus, the goal was 
to identify a 10 second period of ambulatory activity with the most consistent step cadence to calculate 
FFT and Wavelet based features from. Figure 6 provides a visualisation of candidate steps and how 
periods of ambulatory activity are identified. Figure 6 also shows an example of a 10 second window 
being select for FFT and Wavelet coefficients to be extracted from. 
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Figure 6: Filtered Accelerometer Signal for 1 Day (with multiple zoom levels) showing detection of candidate steps and periods 
of ambulatory activity 

Model Training 
As previously discussed, model training should be considered as a pipeline of steps comprising feature 
pre-processing, feature selection, training, parameter tuning and model selection. Model training, and 
any of the individual pipeline steps, will only be performed on the training set. This work will evaluate 
the use of 3 different data types to predict prospective falls: 
 

• (FT) Functional test scores from Grip Strength, TUG tests, Gait Velocity  

• (PSW) Gait measures from supervised lab-based pressure sensitive walkway  

• (FLA) Proposed gait measures from free living accelerometer data.  
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Three categories of prediction models will therefore be trained and evaluated to directly compare the 
prediction performance of the 3 different data types. Fall History, defined as a fall occurring in the 12 
months prior to the study, will also be assessed as predictor of future falls and as a feature to 
complement each of the three data types. 
 
The three data types (FT, PSW, FLA) are available for all 1,705 participants. A holdout test set of 
participants, stratified for occurrences of prospective falls, was created using 25% of the data (N=428, 
64 Fallers). A training set of participants was also created using remaining participants not in the 
holdout test set (N=1279, 191 Fallers). Data type specific test and training sets were then derived from 
the set of test and training participants.  
 
The scope of this paper is not to develop or propose novel machine learning models or configurations. 
The aim is to evaluate the proposed FLA features and compare them to more standard FT and PSW 
features, in predicting prospective falls. To build predictive models, consideration needs to be given to 
the type of feature prepossessing and learning algorithms that will be used. In addition, appropriate 
hyper-parameters need to be set for the chosen algorithms. To remove any potential bias that could 
be introduced, by choosing prepossessing techniques, learning algorithms or hyperparameters that 
favours one of the 3 data types over another, a systematic and objective methodology to select 
algorithms and hyperparameters is implemented. This method uses an automated machine learning 
methodology based on Bayesian optimization methods to select from 15 classifiers and 14 feature 
preprocessing algorithms. The final prediction model, including algorithms, models, features and 
hyperparameters, is selected based on performance calculated from 10-fold cross validation on the 
training set. Overall model performance of the final prediction model is evaluated using the holdout 
test. 
 
Results 
In this work, 3 different data types were used to train and test machine learning models for fall risk 
prediction as previously described. For each data type, an automated Bayesian Optimization based 
machine learning methodology was utilized to configure a machine learning pipeline and train models. 
Models were configured and trained using training set data only. The training set was split into a cross-
validation set (N=1087, 163 Fallers) and a validation set (N=192, 28 Fallers). The Bayesian Optimization 
system was implemented to maximize the average g-mean, over 10 folds, computed from the cross-
validation set. Using early stopping, the validation set was utilized to reduce the models over-fitting 
on the cross validation set. After each epoch of the Bayesian Optimization process, g-mean was 
calculated for the cross validation set and the validation set. Early stopping of the Bayesian 
Optimization process was performed when validation set performance began to diverge from cross 
validation set performance.  
 
After model configuration and training was completed for each of experiment data type condition, 
testing was performed on each model using the holdout test set (N=428, 64 Fallers). Experiments were 
performed to compare retrospective and prospective fall classification accuracy using different 
combinations of FLA, FT and PSW data types. Experiments included independent assessment of FLA, 
FT and PSW data types while also evaluating potential complementary information provided by 
combining data types. Feature combinations FLA+FT, FLA+PSW, FT+PSW and FLA+PT+PSW were 
therefore evaluated to assess if retrospective and/or prospective fall classification improved when 
using combined data types. 
 
Tables 5 and 6 show fall classification performance scores for retrospective and prospective fall 
respectively for the different data types. Sensitivity and Specificity scores are shown, in both tables, 
for the cross validation set and the holdout test set when early stopping was and was not implemented. 
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Table 5: Performance on Retrospective Falls 

 
Table 6: Performance on Prospective Falls 

Discussion 
The aim of SFRT systems is to improve the screening process for identifying people at high risk of falling 
in the future. Machine learning based experiments, using features constructed from different 
combinations of FLA, FT and PSW data types showed that FLA performed best at predicting prospective 
and retrospective falls. Like results of the statistical analysis, FT and PSW data did not perform well in 
predicting prospective falls. Both FT and PSW performed with moderate performance when classifying 
prospective fallers. 
 
Results show that over fitting occurs on the cross validation set when early stopping is not 
implemented. For retrospective falls, when early stopping was not implemented, sensitivity and 
specificity for the holdout test set dropped by 8% and 3% respectively compared to the cross 
validations set. Similarly for prospective falls, when early stopping was not implemented, sensitivity 
and specificity for the holdout test set dropped by 12% and 3% respectively. No significant difference 
in performance is seen between cross validation and holdout test set when early stopping is 
implemented. 
 
As previously discussed, it vital that performance of an SFRT system be evaluated using data that has 
not been used during training. Performance on the holdout test set is therefore of most interest as it 
is indicative of performance in real world settings. Results show that the FLA data type performs best 
for retrospective falls with a sensitivity and specificity of 0.61 and 0.68 respectively. Similarly, the FLA 
data type also performs best for prospective falls with a sensitivity and specificity of 0.61 and 0.66 
respectively. Interestingly, while performance scores were marginally higher for retrospective falls, 
there was no significant difference between the 2 best performing models for retrospective and 
prospective falls. 
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The best performing model for retrospective falls using FLA data, as configured and selected by 
Bayesian Optimization algorithm, was based on a Naive Bayes classifier. Feature vectors where 
prepossessed by first standardizing features then processed using a Nystroem kernel map using a 
polynomial kernel. The best performing model for prospective falls using FLA data, as configured and 
selected by Bayesian Optimization algorithm, was based on a Stochastic Gradient Descent (SGD) 
classifier. Feature vectors where prepossessed by first standardizing features then reducing the 
dimension using PCA to only include 0.98 of variance. 
 
A recent theoretical modelling analysis concluded that the maximal accuracy of a fall prediction model, 
attempting to identify people with at least one fall incident over the course of a year would not exceed 
0.81. While the results reported in our experiments are far from perfect, when compared to the 
theoretical maximum of 0.81, sensitivity and specificity in the ranges of 0.63-68 are good considering 
the robust nature in which performance was evaluated. 
 

2 Functional tests for frailty measurement 

2.1 Muscle mass, physical activity, bone quality & risk of falling32 

Background 
Lower skeletal muscle density, indicating greater infiltration of adipose tissue into muscles, is 
associated with higher fracture risk in older adults. We aimed to determine whether mid-calf muscle 
density is associated with falls risk and bone health in community-dwelling older adults. 

 

Methods 
2214 community-dwelling men and women at age 70 were included in this analysis. Mid-calf muscle 
density (mg/cm3) at the proximal tibia, and volumetric bone mineral density (vBMD) and architecture 
at the distal and proximal tibia and radius, were assessed by peripheral quantitative computed 
tomography. Whole-body lean and fat mass, lumbar spine, and total hip areal bone mineral density 
(aBMD) were assessed by dual-energy X-ray absorptiometry. Participants completed seven-day 
accelerometer measurements of physical activity intensity, and self-reported falls data were collected 
6 and 12 months later. Participants wore a triaxial accelerometer (GT3X+; Actigraph, Pensacola, FL, 
USA) for seven days following the clinic appointment. This solid-state accelerometer measures 
acceleration with a dynamic range of Å}6 g in the anterior–posterior (z), mediolateral (x), and vertical 
(y) axes. Participants were instructed to wear the accelerometer on their non-dominant hip and to 
remove it only when showering, swimming or in bed at night. They were also instructed to be normally 
active in accordance with their current lifestyle, to obtain representative accelerometer 
measurements. Participants who did not provide at least 4 days of at least 10 h per day of valid 
measurements had accelerometer data excluded. Accelerometer data were collected at a frequency 
of 30 Hz and data were transformed into “counts” of movement with an activity threshold of 100 
counts per min (CPM). Collected data were downloaded using ActiLife 6.11.2 software (Actigraph, 
Pensacola, FL, USA) in epoch lengths of 60 s with subsequent wear time validation performed. Periods 
≥60 min characterized by zero activity were marked as nonwear time, facilitating the exclusion of sleep 
time from further analyses. Sedentary time was classified as 1 to 99 CPM, while physical activity 
was classified as light (100 to 1,951 cpm), moderate (1,952 to 5,724 cpm). 

 

Results 
302 (13.5%) participants reported a fall at the 6- or 12-month interview, and 29 (1.3%) reported a fall 
at both interviews. After adjustment for confounders, each standard deviation decrease in mid-calf 
muscle density was associated with a trend towards greater likelihood of experiencing a fall (OR 1.13; 
95% CI 1.00, 1.29 per SD lower) and significantly greater likelihood of multiple falls (1.61; 1.16, 2.23). 
Higher muscle density was not associated with total hip aBMD, and was associated with lower lumbar 
spine aBMD (B=-0.003; 95% CI -0.005, -0.001 per mg/cm3) and higher proximal cortical vBMD (0.74; 
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0.20, 1.28) at the radius. At the tibia, muscle density was positively associated with distal total and 
trabecular vBMD, and proximal total and cortical vBMD, cortical thickness, cortical area, and stress-
strain index (all P < 0.05). Only moderate/vigorous (%) intensity physical activity, not sedentary time 
or light activity was associated with higher mid-calf muscle density (0.086; 0.034, 0.138). 

Conclusions 
Lower mid-calf muscle density is independently associated with higher likelihood for multiple incident 
falls over 12 months and may have localised negative effects on bone structure at the tibia. Further 
studies are required to determine whether these associations persist over the long-term, and 
potentially contribute to the greater fracture risk previously observed in older adults with low muscle 
density. 
 

2.2 Using wearables to evaluate symptoms from hands in Parkinsons disease 

Introduction  
Parkinson’s disease is a progressive neurological disorder, which so far cannot be cured.  Parkinson's 
(PD) results from a shortage of dopamine, a chemical that helps instructions from the brain to cross 
from one nerve cell to the next, in a part of the brain called the substantia nigra, which has to do with 
controlling movement33.   
The symptoms of Parkinson’s disease are multiple; the most identifiable are related with the motor 
degenerations. In particular, the most recognizable are considered four: tremor, rigidity, movements 
impairments (akinesia, bradykinesia and hypokinesia), and postural instability.   Tremor is the most 
common; it typically occurs at the distal parts of the limbs and it generally affects a single arm or leg, 
becoming bilateral with the degeneration of the disease34. There are many different types of tremor 
that affect people in different ways; the most common are:  

 
• Rest tremor: occurs when the muscles are not being voluntarily moved.  

• Postural tremor: occurs while maintaining a position such as out stretching your arm.  

• Kinetic tremor: occurs when the limb or body part is being moved.   
 
Over a period of around twenty years, the Unified Parkinson’s Disease Rating Scale (UPDRS) has been 
the most used clinical rating for PD35. In 2001, it was updated and revised by the Movement Disorder 
Society (MDS), and, as a result, the MDS-UPDRS was released.  Due to the heterogeneity and the 
complexity of PD symptoms, standard clinical rating may be challenging in the detection of severity 
levels. Consequently, clinicians with different degrees of experience and background may provide 
different results.   
Wearable sensors give the opportunity to improve the evaluation of the PD motor symptoms, 
matching the obtained objective results with the clinical assessment.   

  

Aim  
The aim of the following study is to implement an automatic indoor evaluation of severity levels in 
Parkinson’s subjects via a supervised machine learning approach. Several devices are used; in 
particular, inertial measurement unit, surface electromyography, and bend sensors. The protocol for 
the data collection consists of hand function tests, adapted in part from the MDS-Unified Parkinson's 
Disease Rating Scale (MDS-UPDRS). The PD severity for each exercise, is computed and compared with 
the clinician evaluation.  

  
Materials and method  

Subjects  
Twenty PD patients ≥ 50 years of age and diagnosed with Parkinson’s disease and two aged match 
healthy volunteers participated in the study. The subjects were recruited through the Cork Parkinson’s 
Association of Ireland branch, through word of mouth of these members to non-members, and via 
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movement disorder clinics. They varied in age, PD stage, and functional ability. We did not include 
anyone with severe or late-stage PD because they would not have been physically able to travel to the 
study site and complete the hand movements. Eight PD specialists rated the videos. They included 
neurologists, geriatricians, and specialist registrars in geriatrics. All patient provided written informed 
consent. This research protocol has been approved by the local ethical committee.  
Protocol  
Participants completed six movements with their hands. We adapted the choreography of the 
movements from the MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Each movement 
took about 30 seconds per hand to complete. The testing protocol consists in two repetitions of the 
following exercise:   

• Resting tremor (duration 30 s): the patient sits quietly in a chair with the hands placed on the 
arms of the chair.   

• Postural tremor (duration 30 s): the patient stretches arms out in front of his/her body with 
wrist straight and palms facing down 

• Kinetic tremor (5 times): the patient executes a finger-to-other object movement. 

• Finger tapping (30 times): index finger to thumb 

• Hand Opening & Closing (15 times) 

• Wrist Pronation / Supination (15 times)  
All testing is done with the patient sitting in a chair with arm rests, and good back support, with both 
feet supported on ground. 
 
Devices overview  
Participants wore several devices to measure muscle response (electromyography (EMG)) and hand 
speed (accelerometers). They also wore a prototype of the PD monitoring glove (right hand only). The 
following research-grade/prototype devices were selected for the study. Details are illustrated as 
follows: 

Xsense 3D motion tracking (Xsense, Enschede, Netherlands): A research-grade motion tracking 
unit which provides inertial raw data (accelerometer, gyroscope, and magnetometer) as well as 
position and orientation computed via proprietary validated algorithms. 
BTS FREEEMG (BTS Bioengineering Corp., Quincy, USA): is a research-grade 4G technology for 
surface electromyography (EMG) analysis. The wireless nature, lightness and size enable users 
to perform free movements without any constraints. 
Actisense Glove (licensed technology from the University of Ulster, Northern Ireland): a glove 
designed to assess joint angles in the fingers of patients suffering from various forms of 
morbidities. It works by using bend sensors on the joints to feed data back to a control unit on 
the wrist, which then sends the data wirelessly to a remote station for analysis. 

 
Device set up  
First repetition - Devices position (Figure 7.):  
2 Xsense units, 1 strapped to the back of each hand. 
4 FREEEMG units, 1 attached to each underside of the palm and back of each forearm (specifically on 
the Abductor Pollicis Brevis Muscle and on the Extensor Digitorum Muscle) 
Second repetition - Devices position (Figure 8.): 
1 Action Sense Glove (Right-Hand only) 
1 XSense IMU on the back of the hand (Right-Hand only)  
Both the repetitions are recorded by two video cameras (BTS VIXTA50) for the clinicians’ evaluation of 
the disease. 
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Figure 7. First repetition - Device positions  
  
  
 

 
Figure 8. Second repetition - Device positions  
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Video recording 
Two cameras recorded participants to provide the raters with multiple angles of the movements. 
Participants’ faces were blurred to protect their privacy and to reduce potential bias from the raters, 
some of whom personally know some of the participants. 
We compiled two videos for each participant (#1 with EMG sensors, #2 with glove). The videos 
presented the six movements in a random order. We created 40 videos (20 participants x 2 sets of 
movements). 
The raters rated the 40 videos in a random order. 
 

Rating 
Eight PD specialists rated the videos based on their understanding of the MDS-UPDRS criteria. We 
provided a document with a 10cm line for each movement (total of 240 movements). See an example 
of the lines below in Figure 9. We asked the raters to place a mark on the line that represented their 
interpretation of that participant’s disease severity. We intentionally left the end of the line open in 
case the raters wanted to give a rating of 0 or 100. We measured the marks to the nearest millimetre. 
Scores were recorded as whole number, from 0 to 100.  

 

Analysis 

Spread of data 
Below are two examples of the spread of data. Each of these box & whisker plots (Figures 10 and 11) 
corresponds to one participant. The six hand movements (right and left hand) are along the x-axis. The 
PD specialist ratings from 0-100 are along the y-axis.  

Figure 9 
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Greater spread (i.e. taller box) indicates variability among the ratings and, therefore, possible 
disagreement among the raters.  
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Intra-class Correlation Coefficient (ICC) 
The ICC is a measure of reliability, specifically the reliability of 
two different raters to measure subjects similarly. Inter-rater 
reliability is important as it demonstrates that a scale is robust 
to changes in raters. Hence, scales with high inter-rater 
reliability are less prone to measurement error such as caused 
by variation in human judgment. 

A high ICC close to 1 indicates high similarity between values 
from the same group. A low ICC close to zero means that values 
from the same group are not similar. 

A low ICC could be caused by several factors: errors and 
limitations of the measurement tool; improper training of 
raters; errors by participants; errors or misinterpretations by 
raters.  

We calculated 18 ICC scores: 

• 6 with the EMG/accelerometer on the right hand 

• 6 with the EMG/accelerometer on the left hand 

• 6 with the glove on the right hand 

Three ICC summary tables are presented below. Most ICC scores are poor. The moderate ICC scores of 
Resting Tremor could be the result of frequent zero, or “normal,” ratings. Many participants showed 
no tremor when resting and were therefore given a zero rating. However, the tremors materialised in 
the subsequent movements and the raters varied in how they scored those tremors.  
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This study shows that, when presented with videos of hand movements, PD specialists interpret motor 
symptom severity differently. It remains to be determined what causes these discrepancies. 
Standardised training, a modified measurement tool, and in person ratings could improve ICC scores 
and will the topic of future research.  

 

 
 

 
 
 

 

Glove Right Hand 

EMG & Accelerometer Right Hand 

EMG & Accelerometer Left Hand 

Table 7 

Table 8 

Table 9 
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Classification 
From the data collected, a number of features were extracted: concerning resting, postural and kinetic 

tremor as well as wrist pronation/supination the features will be mainly extracted from the Xsense; 

while for finger tapping and hand opening and closing will be considered Xsense, FREEEMG and Glove. 

Preliminary data processing 
Concerning inertial sensors, data were resampled from 100 Hz to 1000 Hz. Subsequently, the signals 

were filtered by means of a moving average filter with windows of five samples; the main aim of this 

step was to eliminate the influence of undesired low frequency components. Then, values were scaled 

by subtracting their mean and dividing the absolute value of their max, to guarantee that data oscillate 

evenly around zero. 

The EMG signals (sample frequency = 1000 Hz) were firstly filtered by a high-pass Butterworth 

filter of order 4 (cut-off frequency of 10 Hz) and secondly by a moving average filter with windows of 

three samples; the purpose was to eliminate the influence of undesired low frequency components. 

Afterward, the EMG signals were scaled by subtracting their mean and dividing the absolute value of 

their max, to ensure that data oscillate evenly around zero. 

Preliminary data processing was carried out in MATLAB R2019b (Mathworks, Inc., Natick, MA, 

USA). 

Feature Extraction 
Several time and frequency domain features were calculated for both inertial and EMG data. All the 

features were computed for both right and left side of the signals: ax, ay, az, atot, gx, gy, gz, gtot, jerkx, 

jerky, jerkz, jerktot, abductor pollicis brevis muscle (APB), extensor digitorum muscle (ED), evelope of 

APB, and envelope of ED. 

 

                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

To enhance the extraction, signals were divided into observation widows of 700 samples with an 

overlap of 500, in exercise one (resting tremor), two (postural tremor), four (finger tapping), and five 

(hand opening and closing). While movements were segmented in exercises two (kinetic tremor) and 

six (wrist pronation/supination).  Figures 12 and 13 show how data were segmented during kinetic 

tremor (finger to object) and wrist pronation/supination.  

Feature extraction was carried out in MATLAB R2019b (Mathworks, Inc., Natick, MA, USA). 

 

 

Frequency domain 

• Dominant frequency  

• Magnitude dominant 

frequency 

• Spectral centroid 

• Spectral edge frequency 

• Harmonic ratio 

• Index harmonicity 

• Median frequency 

• Entropy 

 

 

Time domain 

• Mean absolute value  

• Root mean square  

• Variance  

• Interquartile range  

• Skewness  

• Kurtosis  

• Wave form change  

• Wave form change squared  

• Energy  
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Figure 12. Kinetic tremor - number of samples (x-axis) vs signal amplitude (y-axis) 

       
Figure 13. Wrist pronation/supination - number of samples (x-axis) vs signal amplitude (y-axis) 

Learning Model 
Eight PD specialists rated the exercises based on their understanding of the MDS-UPDRS criteria; scores 

varied from zero to 100. To assess the presence of tremor, each observation window (for resting 

tremor, postural tremor, finger tapping, and hand opening and closing) and movement (for finger to 

object and wrist pronation/supination) was labelled 1 (absence or mild tremor – score from zero to 

ten) or 0 (presence of tremor – score from 10 to 100).  

All features were fed to a supervised-based classifier developed in Python 3 (Python Software 

Foundation, Delaware, US). Models considered for the classifier were k-Nearest Neighbors (kNN), 

Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF). F1 score was used as a metric to 

quantify the goodness-of-fit comparing the predictions of the classifier with the real labels each 

observation belongs to.  
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To build the model, the dataset was split into training set, 80%, and test set, 20%. Stratification was 

considered during the partitioning to insure the same percentage of 0 (presence) and 1 (absence) in 

both sets.  

Subsequently, a k-fold cross-validation (with k = 10) and a grid search was employed on the training 

set to obtain optimal values for the model hyper-parameters. Fitting and feature selection were 

deployed simultaneously.  The F1 score for train, validation, and test set was used to evaluate the 

performance of each classifier. 

Results and Discussion 
 

The results for each exercise and classifier are synthetized in Table 10.   

Exercise one - Resting tremor 
The four classifiers had good performances with F1 test higher than 0.96 (Table 10). The classifiers 

were neither overfitting nor underfitting (Table 10). KNN had the best results; Figure 14 shows the 

related confusion matrix. 

 

 
Figure 14. Exercise one – KNN - Confusion matrix 

Exercise two - Postural tremor 
 

The four classifiers reported an F1 test higher than 0.96 with neither overfitting nor underfitting (Table 

10). KNN had the best results (Figure 15). 

 

 
Figure 15. Exercise two – KNN - Confusion matrix 
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Exercise three - Kinetic tremor 
KNN achieved an F1 test equal to 0.94 without overfitting or underfitting (Figure 16 and Table 10). LR, 

DT, and RF suffered from overfitting. 

 

 
Figure 16. Exercise three – KNN - Confusion matrix 

Exercise four - Finger tapping 
KNN achieved an F1 test equal to 0.96 without overfitting or underfitting (Figure 17 and Table 10). LR, 

DT, and RF suffered from overfitting. 

  

 
Figure 17. Exercise four – KNN - Confusion matrix 

Exercise five - Hand opening and closing 
KNN achieved an F1 test equal to 0.88 without overfitting or underfitting (Figure 18 and Table 10). LR, 

DT, and RF suffered from overfitting. 

 
Figure 18. Exercise five – KNN - Confusion matrix 
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Exercise six - Wrist pronation/supination 
KNN, LR, and RF had good performances with F1 test higher than 0.83 (Table 10). The classifiers were 

neither overfitting nor underfitting except for Decision tree (Table 10). KNN had the best results; Figure 

19 shows the related confusion matrix. 

 

 
Figure 19. Exercise six – KNN - Confusion matrix 

 
Table 10. Performance of KNN, LR, DT, and RF. 

Exercise Classifier Hyperparameters F1 traning F1 validation F1 test

KNN k =1 1.00 0.99 1.00

Logistic Regression C = 0.40 1.00 0.98 0.99

Decision Tree Max depth = 5 0.98 0.94 0.96

Rondom Forest

Criterion = entropy

  Max depth = 7

  Number of estimators = 

60

1.00 0.98 0.99

KNN k =1 1.00 0.99 0.98

Logistic Regression C = 0.40 1.00 0.98 0.98

Decision Tree Max depth = 5 0.99 0.96 0.96

Rondom Forest

Criterion = entropy

  Max depth = 7

  Number of estimators = 

40

1.00 0.98 0.98

KNN k =1 1.00 0.95 0.94

Logistic Regression C = 0.20 1.00 0.94 0.88

Decision Tree Max depth = 5 1.00 0.77 0.77

Rondom Forest

Criterion = gini

  Max depth = 6

  Number of estimators = 

40

1.00 0.90 0.87

KNN k =2 0.97 0.94 0.96

Logistic Regression C = 0.20 0.93 0.75 0.77

Decision Tree Max depth = 6 0.91 0.72 0.70

Rondom Forest

Criterion = entropy

  Max depth = 7

  Number of estimators = 

70

0.98 0.79 0.83

KNN k =2 0.96 0.88 0.88

Logistic Regression C = 0.1 0.94 0.75 0.71

Decision Tree Max depth = 7 0.95 0.72 0.66

Rondom Forest

Criterion = entropy

  Max depth = 7

  Number of estimators = 

80

0.99 0.71 0.59

KNN k = 3 1.00 0.98 0.99

Logistic Regression C = 0.1 1.00 0.95 0.96

Decision Tree Max depth = 5 0.99 0.84 0.83

Rondom Forest

Criterion = entropy

  Max depth = 6

  Number of estimators = 

40

1.00 0.96 0.95

4

5

6

1

2

3
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2.3 Measuring spinal flexibility with wearables 
SUPERVISED IMU RELIABILITY IN DERRY/LONDONDERRY, NORTHERN IRELAND, UK  
 

Introduction 
In 2016, the highest prevalence of spondyloarthritis was in North America and Europe, 1.35% and 
0.54% respectively 36. A key outcome measure for axial spondyloarthritis (axSPA) - a form of arthritis 
causing inflammation of spinal joints - is spinal mobility, but this is highly variable and subjective when 
assessed using conventional tools, e.g., goniometer 37. Cervical rotation is the only movement test 
measured in degrees in the Bath Ankylosing Spondylitis Metrology Index (BASMI). Inertial 
Measurement Unit (IMU) sensors can attain accurate measures of body motion. 

 

Aim 
Our main goal was to evaluate the reliability of IMU attained measurements (from movement tests 
performed by axSpA participants) against measurements attained from conventional BASMI, the 
‘Truth’ dimension of the OMERACT filter 38. 
 

Materials and methods 
Our methodology was as follows: Spinal movements were tracked and recorded using IMU sensors in 
40 axSpA participants, who have a wide range of disease severity and a mean disease duration of 13 
years, at Altnagelvin hospital in Derry/Londonderry, Northern Ireland (2018-2019). Dorsa Vi Move IMU 
sensors were used in this study and set specifically in two positions (Figure 20): 

1. At the lumbar level over T12 and S1 bony landmarks (Vi Move custom adhesives and height-
specific templates were employed to achieve position accuracy). 

2. At the cervical level at occiput and T3. 
 
Apart from monitoring back and neck movements on patients, there were also collected patient 
reported outcomes and conventional metrology. 

 
Figure 20. A: Clip-in Baseplate for sensor: B: Positioning of cervical sensors (occiput, T3) C: Positioning 
of Lumbar sensors using height specific template (T12, S1) 
 
Intra-rater, inter-rater and test-retest reliability with a two-week gap between tests were performed 
as follows:  
 
Day1: 
Physio A takes the Range of Movement (ROM) measurements from the participant wearing the sensors 
twice: early in the morning and then again after a couple of hours. 
Physio B takes the ROM measurements from the same participant wearing the sensors after a couple 
of hours and after Physio A completed his/her set of measurements. 
Day2: 
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Physio A takes the ROM measurement from the participant wearing the sensors again. The ROM angles 
at lumbar and cervical regions of each participant visit were analysed using IBM SPSS v 25. The 
technique employed was Intraclass Correlation Coefficients (ICCs). For both regions, the maximum 
ROM angles for anterior flexion/extension (Flex), lateral flexion (Left+Right) and rotation (Left+Right) 
were analysed. Also, these six attained values were employed to calculate the IMU-ASMI composite 
score. Pearson correlation coefficients were calculated for each component and the overall score and 
with Bath Ankylosing Spondylitis Functional Index (BASFI). 

 

Results 
Person correlations for IMU and conventional measurements were obtained and shown in Tables 11 
and 12, respectively. 
  

Table 11. Reliability ICCs for IMU test 
 

Table 12. Reliability ICCs for conventional spinal test 
 
As can be observed in Tables 11 and 12, sensor tests show excellent reliability. Potential ‘floor’ effects 
were seen with cervical tests, and ‘ceiling’ effects were seen with some lumbar tests. No such issues 
were seen with composite IMU values. IMU measures showed reliable equivalence with the 
comparable BASMI measurements (correlating closely). Cervical rotation, side flexion, lumbar flexion, 
and cervical flexion with values of r equals to 0.85, 0.84, 0.62 and 0.65, respectively. The mean BASMI 
was 4.8 (range from 1.2 to 8.4). The mean IMU-ASMI score was 4.0 (range from 0.1 to 9.3). The 
correlation between BASMI and IMU-ASMI was 0.88. The correlation between BASFI and BASMI was 
0.68 and between BASFI and IMU-ASMI is 0.71. 
 
Lumbo-pelvic restriction unforeseen patterns, Figure 21, were found: The mean contribution to the 
lumbar flexion by the pelvic movement was 52.6%. Fifteen out of the forty participants had an 
abnormal Lumbo-Pelvic Rhythm (LPR): There were identified 7 and 8 individuals with lumbar and pelvic 
restrictions, respectively. Of these identified individuals, 12 had trunk flexion less than 70 degrees and 
in those with trunk flexion larger than 70 degrees, 22 out of 25 had a normal LPR. 
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Figure 21. Examples of Lumbo-pelvic restriction observed on this study  
 
 
Discussion and conclusion 
Test-retest reliability of individual cervical movement-test was good to excellent (ICCs>0.8), superior 
to those reported by Theobald, Jones and Williams 39. Lumbar movements tests had slightly lower test 
reliability (ICCs>0.7), like the findings reported by Ronchi et al.40 and Laird, Kent and Keating 36 using 
the same sensor setup. Combining the right and left or flexion movements improved reliability, 
probably, because it is difficult for assessors to appraise the return to the exact midline point. 
 
Both intra-rater and inter-rater reliability were excellent. Cervical tests were more reliable than 
lumbar-spine movement tests. The variability in lumbar measurements was due to biological variability 
rather than sensor error: Laird, Kent and Keating 41  suggested that it was due to inherent variability in 
the “lumbo-pelvic rhythm”. IMU sensor tests are of clinical relevance because they give detailed 
overview of movement limitations in degrees by region and movement type. 
 
IMU measures showed reliable equivalence with the comparable BASMI measurements, correlating 
closely. Lumbo-pelvic restriction patterns that were unexpected were found. IMU sensors were highly 
reliable in measuring spinal movement for axSPA patients. 
 

Future work 
A mobile application is currently on development, which will be used in combination with IMU sensors 
that the participants can bring with them at home. A usability assessment study will be conducted with 
the App. 
 
  

2.4 Usability of wearable sensors in the rehabilitation hospital and home rehabilitation - 
Emphasis on two sensor systems analyzing gait  

Purpose 
The purpose of the study was to analyze Usability and Utility of two wearable sensor systems of 

measuring gait in real life rehabilitation for elderly. Evaluated was smart insoles (MoveSole®) and one 

sensor system (G-WALK®). These attributes were in two phases qualitative protocol evaluated: 

Questionnaire (System Usability Scale) after each use and Theme interview after longer using period.  
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Methods 
This research used a qualitative approach, and the content analysis was made with 

theoretical/thematic analysis. Twelve participants were interviewed. The interviews were face-to-face, 

semi-structured theme interviews and the themes were planned in advance. In semi-structured 

interviews the participants have opportunity to raise issues even though there are ready-made themes 

in the interview 16 (pp. 78.), and this was also considered in the interviews.  

We compiled the interview themes based on Nielsen´s criteria of usability 42 (pp.25) and in addition 

the context theme. System acceptability is divided into social acceptability and practical acceptability. 

Practical acceptability is further divided usefulness and usefulness to utility and usability. Our theme 

interview included social acceptability, and usability from the practical acceptability. 

  

Preliminary results 
Qualitative analysis and reporting is currently on going. 

The insole system (MoveSole®) could be used regularly, and it is easy to learn and use. Major variation 

was reported about the experience of the inconsistency of the insole system. Experiences from G-

WALK® -system seems to be uniformly positive. Therapists had varied thoughts about their need for 

development and support of new skills and knowledge before the permanent use of wearable sensors.  

Most of the patients were interested in the achieved results and were willing to use sensor systems, 

but they need assistance in the use and interpretation of results. 

  

2.5 Validation process of one wearable sensor system product  
Abstract 
Sensor insoles usually measure gait ground forces or pressure using piezoelectric phenomenon. Micro 

voltage (µV, µC) results are used as the basics of counting pressure and/or force values, and various 

algorithms are used to achieve necessary results from measures. Typical results, that are wanted for 

research and especially clinical work, are for example movements of center of mass during steps, 

distribution of forces or pressure to different areas of the foot during steps, recognition of properties 

in different step phases – heel strike, toe off, mid stance, effect of pronation and supination of foot, 

time of step etc. MoveSole StepLab is a mobile measurement system for instant underfoot force 

measurements during gait, which includes a MoveSole Smart Insole and a MoveSole Smart Device 

wirelessly connected to each other. Unique, electromagnetic film (EMFI) based sensor technology and 

printed electronics production technology is integrated in the MoveSole StepLab measurement 

system. The MoveSole StepLab measures plantar ground force distribution over the sensors and views 

an estimation of the maximum total ground force. 

Our goal was to analyze if the MoveSole is valid equipment for clinical use in rehabilitation processes. 

We made three phases of validation process in order to extract relevant parameters and compared 

the results to a Kistler force plate using Bioware analyzing program as a gold criteria / standard 

measure. We also used other measuring equipment and clinical examination to find impacts from 

spatiotemporal and functional capacity connection to results. 

 

Phase one  

The purpose of the first phase was to compare the ground force results of vertical (Y-) direction of 

Kistler force plate and MoveSole smart insoles and the impact of walking speed on those values. 

Participants trained a few times to walk through the 10 m distance, so that they could be certain that 

their left foot would land on the first Kistler plate (5th step) and the right foot on the second Kistler 

plate (6th step). The two Kistler force plates were placed about the middle of the total distance, so that 

the walking speed was possible to accelerate to selected level.  Participants walked two times with 



   41 

their own natural walking speed and two times with their maximum speed.  The walking speed was 

measured from the middle four meters. (Face, criterion and concurrent validity).  

 

Phase two  

The purpose of the second phase was to compare Kistler and MoveSole results when the insole was 

inside a thin but tight sport sock and on top of those, a slipping preventing Instant Grip Sock® (CareCare 

ltd). Original algorithm was developed through wrestling shoe measures. The set-up was developed to 

find out, if the algorithm is accurate compared to - as close as possible - bare foot measurements and 

if the foot elasticity properties could be detected in MoveSole values.  

Participants trained a few times to walk through the distance, so that they could be certain that their 

left foot would land on the first Kistler plate (3rd step). Each participant walked with their own natural 

walking speed seven meters and third (left foot) step ground force was measured. After this, each 

participant walked four times, with their own natural walking speed.  (Criterion validity) 

 

Phase three  
In the third phase, three older male volunteers, with different lower limb problems, due hip or knee 

arthrosis, participated. We analyzed the maximum ground force with Kistler and MoveSole and 

distribution of weight and force to different MoveSole sensors. We studied what kind of impact Sievi-

working shoes had on maximum ground forces, weight and force distribution, together with of-shell 

individually selected or individually designed and structured FootCare® insoles. Comprehensive 

physiotherapeutic clinical examination of lower limb was also done. GaitRite® and G-walk® analysis of 

kinematic properties of gait was done to check if there are some severe spatiotemporal changes in 

gait.  The purpose was to find out if the results of Kistler MoveSole behave logically, concerning 

clinically evident changes of structures and movements of foot and lower limb. This third phase was 

considered as a case study, i.e., could this equipment detect possible impacts in gait (Content validity).  

First, an experienced physiotherapist made a comprehensive examination of lover limb structures. 

Secondly, the length of the lower limb was measured (highest palpated point of trochanter major – 

floor). Thirdly, the height and weight of the participant was measured. Fourth foot width, length, shoe 

size and suggested type of Sievi special insoles were analyzed with a Sievi Scanner. Fifth, an Elinvision 

iQube 500 (JSC Elinvision) (20) scanner was used to measure the foot properties for constructing an 

individually designed Footcare® insole. Sixth, each participant placed a G-walk® sensor on top of the 

sacrum S2 – level. Each participant walked first 10 meters with MoveSole insoles inside a tight athletic 

sock, and on top of it IGS grip socks, and after that they walked 15 meters through GaitRite®. Next, 

participants walked similar way with two different types of Sievi working shoes with basic insole, 

individually selected insole and individually designed and structured insole. One type of shoe is a safety 

shoe with shock absorption structure and the other without. Both have toe and nail protection. This 

was done to detect possible impact of shoes and insoles on foot posture and behavior during step. 

 

Results generally 
Totally 46 voluntary persons participated, in these 3 phases of validation. They walked 4-8 times, 7-15 

m distances, with personal normal or personal maximum speed. Mainly participants were healthy 

adults, to find out the reliability and accuracy compared to golden standard /system within easier 

situation – healthy. Three participants were older 55-61 years, who had various gait problems caused 

by arthrosis and body posture and structures. Key finding was that correlation/accuracy of Movesole 

reached almost clinically relevant level (Pearson correlation about 0.822 - .875). The mean difference 

of Kistler and Movesole values was too big for clinical use varying 9.1 N / 130 N, 130 N /82.3 N 

depending on gait speed and shoe or sock outfit. According Bland-Altman analysis reliability should be 

developed. Important factor to develop within Movesole, was the time that highest vertical ground 



   42 

force was evident. I.e., does it occur either during heel strike or toe off (Pearson correlation .351 - .430 

- .504). Movesole seems to be able recognize changes to ground forces of foot caused different 

structures and ROM, and compensatory actors (shoe, Insole).  Manufacturer is considering 

developments of insole design, working instructions and the algorithm according validation process 

results. 

 

2.6 Demonstrator project: older people use of wearable sensors in home or homelike 
environments with remote connections and equipment 
Sencom remote connection equipment with Movesole smart insoles was used with 14 rehabilitees 

both female and male. MPower emg system was used with one rehabilitee. Totally 84 remote 

rehabilitation sessions with sensors. They were aged 55 – 78 years with various problems of functional 

capacity and diagnosis. Each trial period was 2 – 4 weeks, during that approximately 6 contacts /person 

was conducted. Key factors: technical demands, interaction demands, key attributes of both persons 

and equipment and instruction / guidance: 

1. Some participants had problems remembering what to do in different phases, so the 

equipment was too difficult to use. Conclusion is that the rehabilitee selection and usage 

guidance and support is important.  

2. In a couple of cases the connections didn’t work well enough (for example stone house in 

customer end and University heavy loaded wifi etc. connections). The connections and support 

must be reachable. 

3. Generally, rehabilitees experiences were positive, and results - when explained/understood - 

were interesting and motivating, while using the equipment during updating exercise 

according online reports or instructing exercise while doing them. Some older persons 

reported that the results activated them to do more exercise.  

4. When instructing exercises online with the sensor data online clearly gave more important 

information for therapist, more than just plain picture. 

5. Environment – space, lights etc. must be considered and timetables agreed. responsibility of 

everything working is always “in the therapist end” so you must be able to guide on some level 

both IT and sensor/application technology during session. 

 

 

3 Gait analysis for exercise 

3.1 Measuring of physical activity as potential risk factor for diabetes43 
Insufficient physical activity (PA) is an important risk factor for obesity and noncommunicable diseases 
(NCDs) such as cardiovascular disease (CVD) and type 2 diabetes. For this reason, the World Health 
Organization (WHO) has issued recommendations for different age categories, stating that 150 
minutes of moderate-intensity PA (or 75 minutes of vigorous PA) per week, performed in bouts of at 
least 10 minutes each, will provide significant health benefits for individuals aged 18–64 and ≥65 
years44. Moreover, reaching 300 minutes of moderate-intensity PA (or 150 minutes of vigorous PA) 
per week is suggested to confer additional health benefits. These recommendations are based on 
several extensive reviews assessing the relation between predominantly self-reported PA and different 
aspects of health. Therefore, in the present study, we investigated objective and self-reported PA in a 
large cohort of 70-year-old individuals, with emphasis on PA patterns and amounts in individuals with 
and without diabetes (type 1 or type 2) in relation to the WHO guidelines. 

 
Participants  
The investigated cohort comprised 1,872 participants with complete measurements of PA patterns, 
blood parameters, and body composition. Body composition was assessed by waist circumference and 
by visceral adipose tissue (VAT), quantified by dual-energy X-ray absorptiometry using a Lunar iDXA 
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and the CoreScan application (GE Healthcare, Wauwatosa, Wisc.). No exclusion criteria were applied 
because the aim was to investigate a sample reflecting the general population. Data were collected 
between June 2012 and December 2015, and data analysis was conducted in 2016. The study was 
approved by the Umeå Regional Research Ethics Committee (Dnr 07-031M with extensions).  

 
Diabetes Criteria  
Participants enrolled in the HAI were instructed to be in a fasting state, with no intake of food, calorie-
containing beverage, or nicotine for 4 hours before the clinic visit. A capillary blood sample was 
analyzed on a HemoCue portable glucose analyzer (HemoCue AB, Ängelholm, Sweden) to determine 
the fasting blood glucose (FBG) concentration. In addition, participants’ self-reported information on 
prior diabetes diagnosis was obtained. Information of self-reported diabetes had been shown to have 
very high specificity (99.7%) compared to medical records (16). Participants were divided into four 
groups based on FBG and prior diabetes diagnosis: no diabetes (group 1; FBG <_6.1 mmol/L (<_110 
mg/dL) and no known diabetes, n = 1,396), prediabetes (group 2; FBG ≥6.1 to <_7 mmol/L [≥110 to 
<_125 mg/dL] and no known diabetes, n = 266), diabetes detected in the study (group 3; FBG ≥7.0 
mmol/L [≥125 mg/dL] and no known diabetes, n = 52), and known diabetes (group 4; regardless of 
blood glucose concentration, n = 158). For most results presented, groups 1 and 2 and groups 3 and 4 
were merged into “no diabetes” and “diabetes” groups.  
 

PA Assessments  
Self-reported PA data were obtained using the International Physical Activity Questionnaire–short 
form (IPAQ-SF) (17), which has been validated in several populations in different countries (18). 
Respondents were asked to recall the time spent (in at least 10-minute bouts) walking and engaging 
in moderate and vigorous PA during the past 7 days. Participants were also asked to report their 
adolescent PA levels on a scale from 1 to 5, in which 1 represented excluded from physical education 
and 5 represented training and competing at an elite level.  
 
PA was measured objectively using triaxial accelerometers (GT3X+, Actigraph, Pensacola, Fla.) and sub-
sequently filtered (normal frequency). Accelerometers are motion sensors that detect duration and 
intensity of PA by measuring accelerations in three dimensions. Sampled at 30 Hz, acceleration data 
were then transformed into counts representing activity. For this study, participants were asked to be 
normally active as they wore the accelerometers on their nondominant hip for 7 consecutive days, 
removing it only during water-based activities, including bathing, and nighttime sleep.  
 
Upon participants’ return, accelerometer data were downloaded with ActiLife software 6.6.3 
(Actigraph) into epoch lengths of 60 seconds, and wear-time was validated in accordance with Troiano 
et al. 45. Briefly, participants were required to accumulate at least 4 days of PA measurements, with a 
minimum of 10 hours/day, for the data to be considered valid and eligible for further analysis. Non-
wear time was defined as >60 minutes of inactivity, with a spike tolerance of no more than 2 minutes 
exceeding the cut point for sedentary time. PA patterns were investigated using predetermined cut 
points based on uniaxial counts as described by Freedson et al. (20)46, stating that tasks reaching a 
metabolic equivalent of ≥3 (e.g., walking, jogging, and cycling) are to be considered MVPA. A bout of 
MVPA was defined as at least 10 consecutive minutes, reaching the MVPA threshold of 1,952 counts 
per minute, with allowance for 1- to 2-minute interruptions. The total time per week in MVPA bouts 
and total time in MVPA without bout prerequisite were then recorded separately and used for further 
calculations. In addition, daily step-counts were also attained from accelerometers and retrieved by 
the ActiLife software. Finally, total registered counts from all three axes (with no bout limitation and 
no regard for intensity level) were combined and divided by total accelerometer wear time to form 
the total PA variable, which represents a measure of all PA conducted during the day and thus in 
addition to recorded MVPA also included light PA (e.g., lighter gardening and household work). 
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Summary 
In this population-based study of men and women aged 70 years, participants with known diabetes at 
baseline had PA >20% lower than those without diabetes, as measured by objective accelerometers. 
A cut point of 6,000 steps/day discriminated best between subjects with and without diabetes. 
Number of steps per day also showed the strongest association with amount of VAT, a potential 
mediator of the effects of PA with respect to diabetes.  

 

 
 
 
 
 

 
 

3.2 Exploratory Gait Analysis using Wearable Technology 
Gait Analysis (GA) is an area of research that is continually expanding and evolving across a wide range 
of domains such as medical, healthcare, sport science and surveillance. There are a plethora of gait 
applications such as the evaluation of prosthetics, surgical procedures 47 48, treatments plans, fall risk 
in the elderly 49, elite athletes 50, assessment of neuropathies 51 and identification of individuals for 
forensic biometric purposes 52 53. 
During the past four decades the measurement and assessment of gait has evolved rapidly, tools and 
technology now provide an objective more quantitative approach. Current clinical practice for motor 
assessment of the lower limb in stroke survivors are based upon assessments using a battery of tests 
such as two-minute walking test, timed-up and go, berg balance scale, fugl-meyer assessment, motor 
assessment scale, rivermead motor assessment of movement, motricity index and stroke 
rehabilitation assessment of movement. All the aforementioned motor assessment scales predate the 
year 1997 and have an average age of 31 years. Although they provide a quantitative score they are 
based upon human clinical observation and are subject to inter- and intra-rater variability. Additionally, 
most of these assessment approaches are not capable of detecting subtle changes in motor function 
particularly at the top end of the scales as a ceiling effect often occurs 54. 
Advances in technology used to measure gait have been instrumental in the evolution of GA. 
Biomechanical movement of the human body is complex therefore effective GA requires information 
such as kinematics, ground reaction forces and muscle activity. Motion Capture (MC) strives to 
measure kinematic data in accurate, valid, and unobtrusive manner. There are two competing MC 
technologies which offer various advantages and have some disadvantages depending on the context 
of the application being considered. In this study we will explore the use of Inertial Motion Capture 
(IMC) technology to collect gait information. 
 

Aim 
The aim of the study is to create a computational gait model via to represent walking activity for the 
healthy population which encompasses some elderly participants. It is anticipated that this model will 
provide a baseline gait model from which further studies into gait analysis for Stroke survivors can be 
conducted.  
 

Participants 
Six healthy volunteers have participated in the study to date. Table 13 provides an overview of 
participant demographics. Four of these participants were recruited via Ulster University in Northern 
Ireland and were aged between 26-61. Two elderly participants were recruited via the Healthy Age 
Initiative in Umeå, Sweden and were 71 years of age, one male, one female (Figure 22).  
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Table 13 Demographic information of participants 

Participant ID Gender Age Height (cm) Weight (Kg) Country 

1 Male 61 179 68.7 NIR 

2 Female 52 158 N/A NIR 

3 Male 26 186 N/A NIR 

4 Male 71 172 73.0 SWE 

5 Female 71 164 64.0 SWE 

6 Male N/A 177 N/A NIR 

 
 
The study will continue to collect data on healthy participants aged 18-75 with no previous conditions 
i.e. no neurological or knee/hip surgery history, so that a robust gait model can be formed.  

 

 
Figure 22: Female elderly participant from Umeå Sweden. 

 

Protocol 
Initial feasibility testing was conducted on 6 participants to evaluate that the wearable systems were 
fit for purpose in terms of robustness, reliability, usability, comfort, repeatability, and set-up time.  
 
Walking activities have been designed to include walking at differing speeds, walking on a treadmill 
versus over the ground. The study also included turns as often it can be overlooked in GA. Given that 
the potential use case scenario for this research will be typically elderly post-stroke survivors some 
slower walking speeds were included. 
 
Participants performed two walking activities. The first involved walking indoors over the ground on a 
flat smooth surface within a gait laboratory environment for 10m and turning. This activity was 
repeated for 2.5 mins at a comfortable walking speed self-selected by the participant.  
 
The second activity required participants to walk for 2.5 minutes at 4 different speeds on a treadmill 
for a total walking time of 10 minutes. The four speeds using the treadmill with zero incline were: very 
slow (0.5m/s), slow (0.75m/s), medium (a comfortable speed self-selected by the participant, either 
1m/s or 1.25m/s) and fast (1.5m/s). The fastest walking speed test is like the 2-minute walking test 
which is a clinical assessment. 
 
To configure the IMC system called Xsens several body measurements were taken to calibrate the 
system as shown in Figure 23. 
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Figure 23: Xsens body measurements 

Note that the walking over the ground activity was not performed on the two elderly participants 
Umeå. 

 

Devices overview 
The following research devices were used to collect gait data/information for the study. 
 
Xsens 
The Xsens IMC system (Figure 24) is a wireless body area network of 17 Inertial Measurement Units 
(IMU) which consists of three sensors (accelerometer, gyroscope, and magnetometer). The software 
algorithms are capable of producing segment and joint information for the whole body however for 
this study the system was restricted to operate on the lower body using just 7 IMUs. 
 

 
Figure 24: Xsens IMC system showing IMU positions for foot, lower leg and upper leg. 

 
Walkinsense 
The Walkinsense smart insole (Figure 25) consists of 8 force sensitive resistors to form a sensor 
network which is attached to a regular shoe insole. This device provides plantar foot pressure data 
which can be used to complement information from the IMC. 
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Figure 25: Walkinsense smart insole showing sensor layout, show insertion and leg attachment. 

The device is worn around the ankle and provide wireless transmission of data via Bluetooth. 
 
Device Calibration 
The Xsens IMC requires calibration prior to each recording to ensure the data/information collected is 
of a high quality. Participants are required to stand in a T pose and when instructed walk forward for 
2 metres and turn and walk back to their starting position and finally turn to face their original starting 
direction. If there is any electromagnetic interference within the recording environment, then the 
calibration may need to be completed more than once. Alternatively, if there is significant 
electromagnetic interference then the activities may need to be moved or equipment responsible for 
the inference switched off. 
 
The Walkinsense devices do not require any calibration but do require both the hardware and software 
to be checked to ensure that data is streaming and being appropriately collected by the software. 

 

Results 
In this study only data/information from the Xsens IMC has been analysed. Please see the future work 
section to read about plans for the Walkinsense insole data. 
 
The Xsens system has already been well validated against OMC systems and has been reported to have 
a coefficient of multiple correlation > 0.96 for all joints during flexion/extension for level walking 
activities 55. However, configuration, calibration and positioning sensors can have varying effects on 
the quality of the data collected. Repeatability was explored for in-day testing of the Xsens without 
doffing/donning the sensors. 
 
The analysis to date has looked at presenting gait information as phase portraits which typically plot a 
joint angle against its velocity. In this study we explored the knee joint but the same principles can be 
applied across many of the other joints or body segments. 
 
Two phase portraits shown in Figure 26 are highly correlated and present knee angle against angular 
velocity of the lower limb for participant 1. These phase portraits show the dynamic nature of the knee 
during walking on a treadmill at a 5.4 m/s for 2 minutes. A single gait cycle is represented by one phase 
which can be seen as a closed loop. The phases are plotted on top of each other as each gait cycle is 
repeated, it shows high levels of correlation but with some dynamic and chaotic variations. The 
variation between gait cycles in the first test can be seen in red while the blue lines show the variation 
of gait cycles in the second test. Since both tests were recorded within 30 minutes and under the same 
conditions the variation which is expected to be minimal between walks can be observed by comparing 
red and blue lines. 
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Figure 26: A highly correlated phase portrait of knee angle versus angular velocity of the lower right leg for Participant 1 

during two separate tests while walking on treadmill at 5.4 m/s for 2 minutes. 
 

To provide a statistical measure of correlation an average gait cycle was computed for both walks and 
a correlation coefficient calculated by comparing both average gait cycles. The average phase portraits 
can be seen in Figure 27, these are highly correlated as expected (r=0.9993). 

 
 

 
Figure 27: A highly correlated (r=0.9993) phase portrait, it represents an average gait cycle from two walks by participant 1. 

The next stage of GA was to compare all of the walking activities for participants across a number of 
different walking speeds; this involved 2-minute treadmill walks at 1.8 km/h, 2.7 km/h, 3.6 km/h or 4.5 
km/h and 5.4 km/h and a final 2 minute walk over the ground for 10 metres with a turn. The phase 
portraits of these walking activities can be seen in Figure 28 for participant 1. Initial observations show 
correlation between walking speed and the area enclosed within the phase portraits. A greater range 
of motion and increased angular velocity should result in an increased area within the curves. 
Additionally, as the speed increases the variability in the phase portraits reduces to produce a more 
rhythmic and stable gait cycle, this is particularly for true for walking activities on the treadmill. It 
seems that this effect is caused by a combination of the treadmill and higher walking speeds. 
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Figure 28: Phase portraits of knee angle versus angular velocity of the lower right leg for Participant 1 at four walking 

speeds (1.8 km/h, 2.7 km/h, 4.5 km/h, 5.4 km/h) on a treadmill walking over the ground at 3.9 km/h. 

 
To quantify the relationship between the area of the phase portraits and speed an average phase 
portrait was computed for each walk. These were then used as a basis to calculate an average area 
of each phase portrait and to plot these against speed to quantify any relationship and how it may 
change across the cohort. Observation of Figure 29 shows a common pattern of increased area 
equating to increased speed. Participants 4 and 5 were elderly and it’s interesting that they were 
able to maintain walking speeds of 1.8 km/h, 2.7km/h and 3.3km/h with a reduced area. 

 

 
Figure 29:Walking activity for six participants showing average phase plot area against speed. 

Comparing treadmill walking activities against over the ground walking in Figure 28 shows that the 
variation in knee angle is more apparent while walking over ground. As the walking over the ground 
activity included turning 180 degrees every 10 metres there are a significant number of turns (n~=16) 
within a 2-minute period. Therefore, it makes it more difficult to attribute the increased knee angle 
variation as a direct result of walking over the ground. The second noticeable feature of the phase 
portraits for walking over the ground is that there is a mirroring effect which results in two prominent 
distinct phases. These are a direct result of walking in two opposite directions and may be combined 
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into a single phase if it is possible to adjust the data to accommodate walking direction. This would be 
a useful analysis feature as it would allow all walking activities to be easily analyzed and compared 
irrespective of walking direction. 

 

Summary 
Gait analysis of the normal population and of different pathologies is an area of research that is 
expanding rapidly. There are several competing technologies that can provide gait information, two 
such competing sets are research gait lab technology and wearable technology. The former tends to 
be more expensive, less flexible and with longer setup times often requiring specialised training. With 
recent advances, wearable technology can offer a cheaper, more accessible, less restrictive, and easier 
to use option without comprising on the accuracy or quality of the information. This is particularly true 
of recent advances of IMC systems. 
The Xsens IMC system captured kinematic data from walking. Due to the exploratory nature of this 
study only the dynamic nature of knee angle during walking was considered; the gait variation across 
a number of walking speeds on a treadmill and walking over the ground and gait variation across the 
population were assessed. Future research aims to build a computational model that can be used to 
assess a user’s gait during ambulation. A large set of features will be generated to serve as input to the 
model and as such can be configured in multiple ways via feature selection to ascertain the optimum 
model and as a result what are the optimum features, technologies, and sensors. 
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Lessons learned and future perspectives 
Frailty is an important health issue that affects older people, increases with increasing patient 
age, and is a multifactorial phenomenon associated with adverse health outcomes. We agree 
with Rockwood et al. that frailty is an umbrella term, a construct for understanding frailty 
conceptualizes the frail older person as a complex system on the threshold of breakdown56. 
 
During the project we have reached an understanding during our demonstrator trials that 
have in some part worked with the conceptualization of frailty as a complex system failure 
and how it might help us understand existing evidence regarding the aetiology and prevention 
of outcomes and, most importantly, how it might impact our clinical practice. The 
demonstrators have helped us to increase our understanding of frailty and its relation to co-
morbidities and how wearables could aid in early detection and monitoring. 
 
We have been able to develop sensory based frailty tests aiming on specific topics such as 
balance and the risk of falling, sedentary behaviour as risk factor for depression and gait 
analysis and fall risk. What becomes evident is that there is a plethora of knowledge on 
research level that needs to be developed to drive innovation and implementation of 
wearables in regular healthcare. 
We have also investigated specific functional tests for frailty measurements such as 
physiological testing for falls and hand symptoms in Parkinson’s disease. Wearables have a 
great potential to develop better testing and monitoring for frail patient group but there is a 
need to validate each subgroup thoroughly and a great need for research and SMEs to 
collaborate to get high quality products that target the need of the healthcare.   
 
We have also investigated the validation processes for wearable sensor systems. To date, 
generally, there is a lack of validation and a lack of statement that data collection is secure 
and that the devices in play are working as expected in many of commercially available 
systems. There is thus a need to investigate validation of wearables, it is not easy to penetrate 
the market which has become evident in our testing.  
We have focused on the process together with SMEs and see a need for more collaboration 
between researchers, SMEs and health care in the future to validate and develop wearable 
products.  
We have also evaluated implementation strategies of use of wearables in home environment 
for home dwelling elderlies. There is potential in wearables as health care improvement 
strategies that are particularly interesting for rural areas. Rural public health centers could 
potentially service relatively larger areas of dispersed older adults with limited resources using 
wearables but there is cost associated with implementation both in product procurement and 
education for staff. 
 
In summary, there are clear challenges to developing technologies for frailty. During the 
project time we have identified three major difficulties that needs addressing: 

1. Objective definition linked to “hard” endpoints such as mortality, falls, fractures. 
2. Agreement on appropriate outcomes for efficacy and registration trials for wearables 

used in the field. 
3. Need to expand potential targeted areas of interest. 
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